About
Quickstart
User Guide
API Reference
Example Notebooks
Contributor Guide
FAQ
GitHub
Twitter
StackOverflow
Discord
Versions
v0.4.6: N/A
v0.5.0
v0.6.2
v0.7.0
main
1. Fairness in Machine Learning
2. Assessment
3. Mitigation
4. Migrating from prior versions
4.1. Migrating to v0.5.0 from v0.4.6
5. Further Resources
User Guide
ΒΆ
1. Fairness in Machine Learning
1.1. Fairness of AI systems
1.2. Types of harms
1.3. Fairness assessment and unfairness mitigation
1.3.1. Group fairness, sensitive features
1.3.2. Parity constraints
1.3.3. Disparity metrics, group metrics
2. Assessment
2.1. Metrics
2.1.1. Ungrouped Metrics
2.1.2. Metrics with Grouping
2.1.3. Scalar Results from
MetricFrame
2.1.4. Control features for grouped metrics
2.2. Fairlearn dashboard
2.2.1. Setup and a single-model assessment
2.2.2. Comparing multiple models
3. Mitigation
3.1. Preprocessing
3.2. Postprocessing
3.3. Reductions
3.3.1. Fairness constraints for binary classification
3.3.2. Fairness constraints for multi-class classification
3.3.3. Fairness constraints for regression
3.3.4. Exponentiated Gradient
3.3.5. Grid Search
4. Migrating from prior versions
4.1. Migrating to v0.5.0 from v0.4.6
4.1.1. Metrics
4.1.2. Renamed object attributes
4.1.3. Exponentiated Gradient and Moments
5. Further Resources
5.1. Books
5.2. Papers
5.3. Online demos, talks, tutorials